类型对象¶
Python 对象系统中最重要的一个结构体也许是定义新类型的结构体: PyTypeObject
结构体。 类型对象可以使用任何 PyObject_*
或 PyType_*
函数来处理,但并未提供大多数 Python 应用程序会感兴趣的东西。 这些对象是对象行为的基础,所以它们对解释器本身及任何实现新类型的扩展模块都非常重要。
与大多数标准类型相比,类型对象相当大。这么大的原因是每个类型对象存储了大量的值,大部分是C函数指针,每个指针实现了类型功能的一小部分。本节将详细描述类型对象的字段。这些字段将按照它们在结构中出现的顺序进行描述。
除了下面的快速参考, 例子 小节提供了快速了解 PyTypeObject
的含义和用法的例子。
快速参考¶
"tp_方法槽"¶
PyTypeObject 槽 [1] |
特殊方法/属性 |
信息 [2] |
||||
---|---|---|---|---|---|---|
O |
T |
D |
I |
|||
<R> |
const char * |
__name__ |
X |
X |
||
X |
X |
X |
||||
X |
X |
|||||
X |
X |
X |
||||
X |
X |
|||||
__getattribute__, __getattr__ |
G |
|||||
__setattr__, __delattr__ |
G |
|||||
% |
||||||
__repr__ |
X |
X |
X |
|||
% |
||||||
% |
||||||
% |
||||||
__hash__ |
X |
G |
||||
__call__ |
X |
X |
||||
__str__ |
X |
X |
||||
__getattribute__, __getattr__ |
X |
X |
G |
|||
__setattr__, __delattr__ |
X |
X |
G |
|||
% |
||||||
unsigned long |
X |
X |
? |
|||
const char * |
__doc__ |
X |
X |
|||
X |
G |
|||||
X |
G |
|||||
__lt__, __le__, __eq__, __ne__, __gt__, __ge__ |
X |
G |
||||
X |
? |
|||||
__iter__ |
X |
|||||
__next__ |
X |
|||||
|
X |
X |
||||
|
X |
|||||
|
X |
X |
||||
__base__ |
X |
|||||
|
__dict__ |
? |
||||
__get__ |
X |
|||||
__set__, __delete__ |
X |
|||||
X |
? |
|||||
__init__ |
X |
X |
X |
|||
X |
? |
? |
||||
__new__ |
X |
X |
? |
? |
||
X |
X |
? |
? |
|||
X |
X |
|||||
< |
|
__bases__ |
~ |
|||
< |
|
__mro__ |
~ |
|||
[ |
|
|||||
void * |
__subclasses__ |
|||||
|
||||||
( |
||||||
unsigned int |
||||||
__del__ |
X |
|||||
unsigned char |
子方法槽(方法域)¶
方法槽 |
特殊方法 |
|
---|---|---|
__await__ |
||
__aiter__ |
||
__anext__ |
||
__add__ __radd__ |
||
__iadd__ |
||
__sub__ __rsub__ |
||
__isub__ |
||
__mul__ __rmul__ |
||
__imul__ |
||
__mod__ __rmod__ |
||
__imod__ |
||
__divmod__ __rdivmod__ |
||
__pow__ __rpow__ |
||
__ipow__ |
||
__neg__ |
||
__pos__ |
||
__abs__ |
||
__bool__ |
||
__invert__ |
||
__lshift__ __rlshift__ |
||
__ilshift__ |
||
__rshift__ __rrshift__ |
||
__irshift__ |
||
__and__ __rand__ |
||
__iand__ |
||
__xor__ __rxor__ |
||
__ixor__ |
||
__or__ __ror__ |
||
__ior__ |
||
__int__ |
||
void * |
||
__float__ |
||
__floordiv__ |
||
__ifloordiv__ |
||
__truediv__ |
||
__itruediv__ |
||
__index__ |
||
__matmul__ __rmatmul__ |
||
__imatmul__ |
||
__len__ |
||
__getitem__ |
||
__setitem__, __delitem__ |
||
__len__ |
||
__add__ |
||
__mul__ |
||
__getitem__ |
||
__setitem__ __delitem__ |
||
__contains__ |
||
__iadd__ |
||
__imul__ |
||
槽位 typedef¶
typedef |
参数类型 |
返回类型 |
---|---|---|
|
||
void * |
void |
|
void * |
void |
|
int |
||
|
||
int |
||
|
|
|
PyObject *const char *
|
|
|
int |
||
|
||
int |
||
|
||
int |
||
|
Py_hash_t |
|
|
||
|
|
|
|
|
|
|
||
int |
||
void |
||
void * |
int |
|
PyObject * |
|
|
|
||
|
||
|
||
int |
||
int |
||
int |
请参阅 Slot Type typedefs 里有更多详细信息。
PyTypeObject 定义¶
PyTypeObject
的结构定义可以在 Include/object.h
中找到。 为了方便参考,此处复述了其中的定义:
typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
/* Methods to implement standard operations */
destructor tp_dealloc;
Py_ssize_t tp_vectorcall_offset;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */
reprfunc tp_repr;
/* Method suites for standard classes */
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
/* More standard operations (here for binary compatibility) */
hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;
/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;
/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;
const char *tp_doc; /* Documentation string */
/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;
/* delete references to contained objects */
inquiry tp_clear;
/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;
/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;
/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;
/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;
destructor tp_finalize;
vectorcallfunc tp_vectorcall;
/* bitset of which type-watchers care about this type */
unsigned char tp_watched;
} PyTypeObject;
PyObject 槽位¶
类型对象结构体扩展了 PyVarObject
结构体。 ob_size
字段用于动态类型(由 type_new()
创建,通常由 class 语句调用)。 请注意 PyType_Type
(元类型)会初始化 tp_itemsize
,这意味着它的实例(即类型对象) 必须 具有 ob_size
字段。
-
Py_ssize_t PyObject.ob_refcnt¶
- Part of the Stable ABI.
这是类型对象的引用计数,由
PyObject_HEAD_INIT
宏初始化为1
。 请注意对于 静态分配的类型对象,类型的实例(其ob_type
指向该类型的对象) 不会被 计入引用。 但对于 动态分配的类型对象,实例 会被 计入引用。继承:
子类型不继承此字段。
-
PyTypeObject *PyObject.ob_type¶
- Part of the Stable ABI.
这是类型的类型,换句话说就是元类型,它由宏
PyObject_HEAD_INIT
的参数来做初始化,它的值一般情况下是&PyType_Type
。可是为了使动态可载入扩展模块至少在Windows上可用,编译器会报错这是一个不可用的初始化。因此按照惯例传递NULL
给宏PyObject_HEAD_INIT
并且在模块的初始化函数开始时候其他任何操作之前初始化这个字段。典型做法是这样的:Foo_Type.ob_type = &PyType_Type;
这应当在创建类型的任何实例之前完成。
PyType_Ready()
会检查ob_type
是否为NULL
,如果是,则将其初始化为基类的ob_type
字段。 如果该字段为非零值则PyType_Ready()
将不会更改它。继承:
此字段会被子类型继承。
PyVarObject 槽位¶
-
Py_ssize_t PyVarObject.ob_size¶
- Part of the Stable ABI.
对于 静态分配的内存对象,它应该初始化为 0。对于 动态分配的类型对象,该字段具有特殊的内部含义。
继承:
子类型不继承此字段。
PyTypeObject 槽¶
每个槽位都有一个小节来描述继承关系。 如果 PyType_Ready()
可以在字段被设为 NULL
时设置一个值那么还会有一个“默认”小节。 (请注意在 PyBaseObject_Type
和 PyType_Type
上设置的许多字段实际上就是默认值。)
-
const char *PyTypeObject.tp_name¶
指向包含类型名称的以 NUL 结尾的字符串的指针。 对于可作为模块全局访问的类型,该字符串应为模块全名,后面跟一个点号,然后再加类型名称;对于内置类型,它应当只是类型名称。 如果模块是包的子模块,则包的全名将是模块的全名的一部分。 例如,在包
P
的子包Q
中的模块M
中定义的名为T
的类型应当具有tp_name
初始化器"P.Q.M.T"
。对于 动态分配的类型对象,这应为类型名称,而模块名称将作为
'__module__'
键的值显式地保存在类型字典中。对于 静态分配的类型对象,tp_name 字段应当包含一个点号。 最后一个点号之前的所有内容都可作为
__module__
属性访问,而最后一个点号之后的所有内容都可作为__name__
属性访问。如果不存在点号,则整个
tp_name
字段将作为__name__
属性访问,而__module__
属性则将是未定义的(除非在字典中显式地设置,如上文所述)。 这意味着你的类型将无法执行 pickle。 此外,用 pydoc 创建的模块文档中也不会列出该类型。该字段不可为
NULL
。 它是PyTypeObject()
中唯一的必填字段(除了潜在的tp_itemsize
以外)。继承:
子类型不继承此字段。
-
Py_ssize_t PyTypeObject.tp_basicsize¶
-
Py_ssize_t PyTypeObject.tp_itemsize¶
通过这些字段可以计算出该类型实例以字节为单位的大小。
存在两种类型:具有固定长度实例的类型其
tp_itemsize
字段为零;具有可变长度实例的类型其tp_itemsize
字段不为零。 对于具有固定长度实例的类型,所有实例的大小都相同,具体大小由tp_basicsize
给出。对于具有可变长度实例的类型,实例必须有一个
ob_size
字段,实例大小为tp_basicsize
加上 N 乘以tp_itemsize
,其中 N 是对象的“长度”。 N 的值通常存储在实例的ob_size
字段中。 但也有例外:举例来说,整数类型使用负的ob_size
来表示负数,N 在这里就是abs(ob_size)
。 此外,在实例布局中存在ob_size
字段并不意味着实例结构是可变长度的(例如,列表类型的结构体有固定长度的实例,但这些实例却包含一个有意义的ob_size
字段)。基本大小包括由宏
PyObject_HEAD
或PyObject_VAR_HEAD
(以用于声明实例结构的宏为准)声明的实例中的字段,如果存在_ob_prev
和_ob_next
字段则将相应地包括这些字段。 这意味着为tp_basicsize
获取初始化器的唯一正确方式是在用于声明实例布局的结构上使用sizeof
操作符。 基本大小不包括 GC 标头的大小。关于对齐的说明:如果变量条目需要特定的对齐,则应通过
tp_basicsize
的值来处理。 例如:假设某个类型实现了一个double
数组。tp_itemsize
就是sizeof(double)
。 程序员有责任确保tp_basicsize
是sizeof(double)
的倍数(假设这是double
的对齐要求)。对于任何具有可变长度实例的类型,该字段不可为
NULL
。继承:
这些字段将由子类分别继承。 如果基本类型有一个非零的
tp_itemsize
,那么在子类型中将tp_itemsize
设置为不同的非零值通常是不安全的(不过这取决于该基本类型的具体实现)。
-
destructor PyTypeObject.tp_dealloc¶
指向实例析构函数的指针。除非保证类型的实例永远不会被释放(就像单例对象
None
和Ellipsis
那样),否则必须定义这个函数。函数声明如下:void tp_dealloc(PyObject *self);
当新引用计数为零时,
Py_DECREF()
和Py_XDECREF()
宏会调用析构函数。 此时,实例仍然存在,但已没有了对它的引用。 析构函数应当释放该实例拥有的所有引用,释放实例拥有的所有内存缓冲区(使用与分配缓冲区时所用分配函数相对应的释放函数),并调用类型的tp_free
函数。 如果该类型不可子类型化(未设置Py_TPFLAGS_BASETYPE
旗标位),则允许直接调用对象的释放器而不必通过tp_free
。 对象的释放器应为分配实例时所使用的释放器;如果实例是使用PyObject_New
或PyObject_NewVar
分配的,则释放器通常为PyObject_Del()
;如果实例是使用PyObject_GC_New
或PyObject_GC_NewVar
分配的,则释放器通常为PyObject_GC_Del()
。如果该类型支持垃圾回收(设置了
Py_TPFLAGS_HAVE_GC
旗标位),则析构器应在清除任何成员字段之前调用PyObject_GC_UnTrack()
。static void foo_dealloc(foo_object *self) { PyObject_GC_UnTrack(self); Py_CLEAR(self->ref); Py_TYPE(self)->tp_free((PyObject *)self); }
最后,如果该类型是堆分配的 (
Py_TPFLAGS_HEAPTYPE
),则在调用类型释放器后,释放器应释放对其类型对象的所有引用 (通过Py_DECREF()
)。 为了避免悬空指针,建议的实现方式如下:static void foo_dealloc(foo_object *self) { PyTypeObject *tp = Py_TYPE(self); // free references and buffers here tp->tp_free(self); Py_DECREF(tp); }
继承:
此字段会被子类型继承。
-
Py_ssize_t PyTypeObject.tp_vectorcall_offset¶
一个相对使用 vectorcall 协议 实现调用对象的实例级函数的可选的偏移量,这是一种比简单的
tp_call
更有效的替代选择。该字段仅在设置了
Py_TPFLAGS_HAVE_VECTORCALL
旗标时使用。 在此情况下,它必须为一个包含vectorcallfunc
指针实例中的偏移量的正整数。vectorcallfunc 指针可能为
NULL
,在这种情况下实例的行为就像Py_TPFLAGS_HAVE_VECTORCALL
没有被设置一样:调用实例操作会回退至tp_call
。任何设置了
Py_TPFLAGS_HAVE_VECTORCALL
的类也必须设置tp_call
并确保其行为与 vectorcallfunc 函数一致。 这可以通过将 tp_call 设为PyVectorcall_Call()
来实现。在 3.8 版本发生变更: 在 3.8 版之前,这个槽位被命名为
tp_print
。 在 Python 2.x 中,它被用于打印到文件。 在 Python 3.0 至 3.7 中,它没有被使用。在 3.12 版本发生变更: 在 3.12 版之前,不推荐 可变堆类型 实现 vectorcall 协议。 当用户在 Python 代码中设置
__call__
时,只有 tp_call 会被更新,很可能使它与 vectorcall 函数不一致。 自 3.12 起,设置__call__
将通过清除Py_TPFLAGS_HAVE_VECTORCALL
旗标来禁用 vectorcall 优化。继承:
该字段总是会被继承。 但是,
Py_TPFLAGS_HAVE_VECTORCALL
旗标并不总是会被继承。 如果它未被设置,则子类不会使用 vectorcall,除非显式地调用了PyVectorcall_Call()
。
-
getattrfunc PyTypeObject.tp_getattr¶
一个指向获取属性字符串函数的可选指针。
该字段已弃用。当它被定义时,应该和
tp_getattro
指向同一个函数,但接受一个C字符串参数表示属性名,而不是Python字符串对象。继承:
分组:
tp_getattr
,tp_getattro
该字段会被子类和
tp_getattro
所继承:当子类型的tp_getattr
和tp_getattro
均为NULL
时该子类型将从它的基类型同时继承tp_getattr
和tp_getattro
。
-
setattrfunc PyTypeObject.tp_setattr¶
一个指向函数以便设置和删除属性的可选指针。
该字段已弃用。当它被定义时,应该和
tp_setattro
指向同一个函数,但接受一个C字符串参数表示属性名,而不是Python字符串对象。继承:
分组:
tp_setattr
,tp_setattro
该字段会被子类型和
tp_setattro
所继承:当子类型的tp_setattr
和tp_setattro
均为NULL
时该子类型将同时从它的基类型继承tp_setattr
和tp_setattro
。
-
PyAsyncMethods *PyTypeObject.tp_as_async¶
指向一个包含仅与在 C 层级上实现 awaitable 和 asynchronous iterator 协议的对象相关联的字段的附加结构体。 请参阅 Async Object Structures 了解详情。
在 3.5 版本加入: 在之前被称为
tp_compare
和tp_reserved
。继承:
tp_as_async
字段不会被继承,但所包含的字段会被单独继承。
-
reprfunc PyTypeObject.tp_repr¶
一个实现了内置函数
repr()
的函数的可选指针。该签名与
PyObject_Repr()
的相同:PyObject *tp_repr(PyObject *self);
该函数必须返回一个字符串或 Unicode 对象。 在理想情况下,该函数应当返回一个字符串,当将其传给
eval()
时,只要有合适的环境,就会返回一个具有相同值的对象。 如果这不可行,则它应当返回一个以'<'
开头并以'>'
结尾的可被用来推断出对象的类型和值的字符串。继承:
此字段会被子类型继承。
默认:
如果未设置该字段,则返回
<%s object at %p>
形式的字符串,其中%s
将替换为类型名称,%p
将替换为对象的内存地址。
-
PyNumberMethods *PyTypeObject.tp_as_number¶
指向一个附加结构体的指针,其中包含只与执行数字协议的对象相关的字段。 这些字段的文档参见 Number Object Structures。
继承:
tp_as_number
字段不会被继承,但所包含的字段会被单独继承。
-
PySequenceMethods *PyTypeObject.tp_as_sequence¶
指向一个附加结构体的指针,其中包含只与执行序列协议的对象相关的字段。 这些字段的文档见 Sequence Object Structures。
继承:
tp_as_sequence
字段不会被继承,但所包含的字段会被单独继承。
-
PyMappingMethods *PyTypeObject.tp_as_mapping¶
指向一个附加结构体的指针,其中包含只与执行映射协议的对象相关的字段。 这些字段的文档见 Mapping Object Structures。
继承:
tp_as_mapping
字段不会继承,但所包含的字段会被单独继承。
-
hashfunc PyTypeObject.tp_hash¶
一个指向实现了内置函数
hash()
的函数的可选指针。其签名与
PyObject_Hash()
的相同:Py_hash_t tp_hash(PyObject *);
-1
不应作为正常返回值被返回;当计算哈希值过程中发生错误时,函数应设置一个异常并返回-1
。When this field is not set (and
tp_richcompare
is not set), an attempt to take the hash of the object raisesTypeError
. This is the same as setting it toPyObject_HashNotImplemented()
.This field can be set explicitly to
PyObject_HashNotImplemented()
to block inheritance of the hash method from a parent type. This is interpreted as the equivalent of__hash__ = None
at the Python level, causingisinstance(o, collections.Hashable)
to correctly returnFalse
. Note that the converse is also true - setting__hash__ = None
on a class at the Python level will result in thetp_hash
slot being set toPyObject_HashNotImplemented()
.继承:
Group:
tp_hash
,tp_richcompare
This field is inherited by subtypes together with
tp_richcompare
: a subtype inherits both oftp_richcompare
andtp_hash
, when the subtype'stp_richcompare
andtp_hash
are bothNULL
.
-
ternaryfunc PyTypeObject.tp_call¶
An optional pointer to a function that implements calling the object. This should be
NULL
if the object is not callable. The signature is the same as forPyObject_Call()
:PyObject *tp_call(PyObject *self, PyObject *args, PyObject *kwargs);
继承:
此字段会被子类型继承。
-
reprfunc PyTypeObject.tp_str¶
An optional pointer to a function that implements the built-in operation
str()
. (Note thatstr
is a type now, andstr()
calls the constructor for that type. This constructor callsPyObject_Str()
to do the actual work, andPyObject_Str()
will call this handler.)The signature is the same as for
PyObject_Str()
:PyObject *tp_str(PyObject *self);
The function must return a string or a Unicode object. It should be a "friendly" string representation of the object, as this is the representation that will be used, among other things, by the
print()
function.继承:
此字段会被子类型继承。
默认:
When this field is not set,
PyObject_Repr()
is called to return a string representation.
-
getattrofunc PyTypeObject.tp_getattro¶
An optional pointer to the get-attribute function.
The signature is the same as for
PyObject_GetAttr()
:PyObject *tp_getattro(PyObject *self, PyObject *attr);
It is usually convenient to set this field to
PyObject_GenericGetAttr()
, which implements the normal way of looking for object attributes.继承:
分组:
tp_getattr
,tp_getattro
This field is inherited by subtypes together with
tp_getattr
: a subtype inherits bothtp_getattr
andtp_getattro
from its base type when the subtype'stp_getattr
andtp_getattro
are bothNULL
.默认:
PyBaseObject_Type
usesPyObject_GenericGetAttr()
.
-
setattrofunc PyTypeObject.tp_setattro¶
一个指向函数以便设置和删除属性的可选指针。
The signature is the same as for
PyObject_SetAttr()
:int tp_setattro(PyObject *self, PyObject *attr, PyObject *value);
In addition, setting value to
NULL
to delete an attribute must be supported. It is usually convenient to set this field toPyObject_GenericSetAttr()
, which implements the normal way of setting object attributes.继承:
分组:
tp_setattr
,tp_setattro
This field is inherited by subtypes together with
tp_setattr
: a subtype inherits bothtp_setattr
andtp_setattro
from its base type when the subtype'stp_setattr
andtp_setattro
are bothNULL
.默认:
PyBaseObject_Type
usesPyObject_GenericSetAttr()
.
-
PyBufferProcs *PyTypeObject.tp_as_buffer¶
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface. These fields are documented in Buffer Object Structures.
继承:
The
tp_as_buffer
field is not inherited, but the contained fields are inherited individually.
-
unsigned long PyTypeObject.tp_flags¶
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number
,tp_as_sequence
,tp_as_mapping
, andtp_as_buffer
) that were historically not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero orNULL
value instead.继承:
Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if the extension structure is inherited, i.e. the base type's value of the flag bit is copied into the subtype together with a pointer to the extension structure. The
Py_TPFLAGS_HAVE_GC
flag bit is inherited together with thetp_traverse
andtp_clear
fields, i.e. if thePy_TPFLAGS_HAVE_GC
flag bit is clear in the subtype and thetp_traverse
andtp_clear
fields in the subtype exist and haveNULL
values. .. XXX are most flag bits really inherited individually?默认:
PyBaseObject_Type
使用Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE
。位掩码:
目前定义了以下位掩码;可以使用
|
运算符对它们进行 OR 运算以形成tp_flags
字段的值。 宏PyType_HasFeature()
接受一个类型和一个旗标值 tp 和 f,并检查tp->tp_flags & f
是否为非零值。-
Py_TPFLAGS_HEAPTYPE¶
This bit is set when the type object itself is allocated on the heap, for example, types created dynamically using
PyType_FromSpec()
. In this case, theob_type
field of its instances is considered a reference to the type, and the type object is INCREF'ed when a new instance is created, and DECREF'ed when an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the instance's ob_type gets INCREF'ed or DECREF'ed).继承:
???
-
Py_TPFLAGS_BASETYPE¶
当此类型可被用作另一个类型的基类型时该比特位将被设置。 如果该比特位被清除,则此类型将无法被子类型化(类似于 Java 中的 "final" 类)。
继承:
???
-
Py_TPFLAGS_READY¶
当此类型对象通过
PyType_Ready()
被完全实例化时该比特位将被设置。继承:
???
-
Py_TPFLAGS_READYING¶
当
PyType_Ready()
处在初始化此类型对象过程中时该比特位将被设置。继承:
???
-
Py_TPFLAGS_HAVE_GC¶
This bit is set when the object supports garbage collection. If this bit is set, instances must be created using
PyObject_GC_New
and destroyed usingPyObject_GC_Del()
. More information in section 使对象类型支持循环垃圾回收. This bit also implies that the GC-related fieldstp_traverse
andtp_clear
are present in the type object.继承:
Group:
Py_TPFLAGS_HAVE_GC
,tp_traverse
,tp_clear
The
Py_TPFLAGS_HAVE_GC
flag bit is inherited together with thetp_traverse
andtp_clear
fields, i.e. if thePy_TPFLAGS_HAVE_GC
flag bit is clear in the subtype and thetp_traverse
andtp_clear
fields in the subtype exist and haveNULL
values.
-
Py_TPFLAGS_DEFAULT¶
This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension structures. Currently, it includes the following bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION
.继承:
???
-
Py_TPFLAGS_METHOD_DESCRIPTOR¶
This bit indicates that objects behave like unbound methods.
If this flag is set for
type(meth)
, then:meth.__get__(obj, cls)(*args, **kwds)
(withobj
not None) must be equivalent tometh(obj, *args, **kwds)
.meth.__get__(None, cls)(*args, **kwds)
must be equivalent tometh(*args, **kwds)
.
This flag enables an optimization for typical method calls like
obj.meth()
: it avoids creating a temporary "bound method" object forobj.meth
.在 3.8 版本加入.
继承:
This flag is never inherited by types without the
Py_TPFLAGS_IMMUTABLETYPE
flag set. For extension types, it is inherited whenevertp_descr_get
is inherited.
-
Py_TPFLAGS_MANAGED_DICT¶
This bit indicates that instances of the class have a
__dict__
attribute, and that the space for the dictionary is managed by the VM.If this flag is set,
Py_TPFLAGS_HAVE_GC
should also be set.The type traverse function must call
PyObject_VisitManagedDict()
and its clear function must callPyObject_ClearManagedDict()
.在 3.12 版本加入.
继承:
This flag is inherited unless the
tp_dictoffset
field is set in a superclass.
-
Py_TPFLAGS_MANAGED_WEAKREF¶
This bit indicates that instances of the class should be weakly referenceable.
在 3.12 版本加入.
继承:
This flag is inherited unless the
tp_weaklistoffset
field is set in a superclass.
-
Py_TPFLAGS_ITEMS_AT_END¶
Only usable with variable-size types, i.e. ones with non-zero
tp_itemsize
.Indicates that the variable-sized portion of an instance of this type is at the end of the instance's memory area, at an offset of
Py_TYPE(obj)->tp_basicsize
(which may be different in each subclass).When setting this flag, be sure that all superclasses either use this memory layout, or are not variable-sized. Python does not check this.
在 3.12 版本加入.
继承:
This flag is inherited.
-
Py_TPFLAGS_LONG_SUBCLASS¶
-
Py_TPFLAGS_LIST_SUBCLASS¶
-
Py_TPFLAGS_TUPLE_SUBCLASS¶
-
Py_TPFLAGS_BYTES_SUBCLASS¶
-
Py_TPFLAGS_UNICODE_SUBCLASS¶
-
Py_TPFLAGS_DICT_SUBCLASS¶
-
Py_TPFLAGS_BASE_EXC_SUBCLASS¶
-
Py_TPFLAGS_TYPE_SUBCLASS¶
These flags are used by functions such as
PyLong_Check()
to quickly determine if a type is a subclass of a built-in type; such specific checks are faster than a generic check, likePyObject_IsInstance()
. Custom types that inherit from built-ins should have theirtp_flags
set appropriately, or the code that interacts with such types will behave differently depending on what kind of check is used.
-
Py_TPFLAGS_HAVE_FINALIZE¶
当类型结构体中存在
tp_finalize
槽位时会设置这个比特位。在 3.4 版本加入.
自 3.8 版本弃用: 此旗标已不再是必要的,因为解释器会假定类型结构体中总是存在
tp_finalize
槽位。
-
Py_TPFLAGS_HAVE_VECTORCALL¶
当类实现了 vectorcall 协议 时会设置这个比特位。 请参阅
tp_vectorcall_offset
了解详情。继承:
如果继承了
tp_call
则也会继承这个比特位。在 3.9 版本加入.
在 3.12 版本发生变更: This flag is now removed from a class when the class's
__call__()
method is reassigned.This flag can now be inherited by mutable classes.
-
Py_TPFLAGS_IMMUTABLETYPE¶
不可变的类型对象会设置这个比特位:类型属性无法被设置或删除。
PyType_Ready()
会自动对 静态类型 应用这个旗标。继承:
这个旗标不会被继承。
在 3.10 版本加入.
-
Py_TPFLAGS_DISALLOW_INSTANTIATION¶
不允许创建此类型的实例:将
tp_new
设为 NULL 并且不会在类型字符中创建__new__
键。这个旗标必须在创建该类型之前设置,而不是在之后。 例如,它必须在该类型调用
PyType_Ready()
之前被设置。The flag is set automatically on static types if
tp_base
is NULL or&PyBaseObject_Type
andtp_new
is NULL.继承:
This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new
(which is only possible via the C API).备注
要禁止直接实例化一个类但允许实例化其子类 (例如对于 abstract base class),请勿使用此旗标。 替代的做法是,让
tp_new
只对子类可用。在 3.10 版本加入.
-
Py_TPFLAGS_MAPPING¶
This bit indicates that instances of the class may match mapping patterns when used as the subject of a
match
block. It is automatically set when registering or subclassingcollections.abc.Mapping
, and unset when registeringcollections.abc.Sequence
.备注
Py_TPFLAGS_MAPPING
andPy_TPFLAGS_SEQUENCE
are mutually exclusive; it is an error to enable both flags simultaneously.继承:
This flag is inherited by types that do not already set
Py_TPFLAGS_SEQUENCE
.参见
PEP 634 —— 结构化模式匹配:规范
在 3.10 版本加入.
-
Py_TPFLAGS_SEQUENCE¶
This bit indicates that instances of the class may match sequence patterns when used as the subject of a
match
block. It is automatically set when registering or subclassingcollections.abc.Sequence
, and unset when registeringcollections.abc.Mapping
.备注
Py_TPFLAGS_MAPPING
andPy_TPFLAGS_SEQUENCE
are mutually exclusive; it is an error to enable both flags simultaneously.继承:
This flag is inherited by types that do not already set
Py_TPFLAGS_MAPPING
.参见
PEP 634 —— 结构化模式匹配:规范
在 3.10 版本加入.
-
Py_TPFLAGS_VALID_VERSION_TAG¶
Internal. Do not set or unset this flag. To indicate that a class has changed call
PyType_Modified()
警告
This flag is present in header files, but is an internal feature and should not be used. It will be removed in a future version of CPython
-
Py_TPFLAGS_HEAPTYPE¶
-
const char *PyTypeObject.tp_doc¶
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc__
attribute on the type and instances of the type.继承:
This field is not inherited by subtypes.
-
traverseproc PyTypeObject.tp_traverse¶
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC
flag bit is set. The signature is:int tp_traverse(PyObject *self, visitproc visit, void *arg);
More information about Python's garbage collection scheme can be found in section 使对象类型支持循环垃圾回收.
The
tp_traverse
pointer is used by the garbage collector to detect reference cycles. A typical implementation of atp_traverse
function simply callsPy_VISIT()
on each of the instance's members that are Python objects that the instance owns. For example, this is functionlocal_traverse()
from the_thread
extension module:static int local_traverse(localobject *self, visitproc visit, void *arg) { Py_VISIT(self->args); Py_VISIT(self->kw); Py_VISIT(self->dict); return 0; }
Note that
Py_VISIT()
is called only on those members that can participate in reference cycles. Although there is also aself->key
member, it can only beNULL
or a Python string and therefore cannot be part of a reference cycle.On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to visit it anyway just so the
gc
module'sget_referents()
function will include it.Heap types (
Py_TPFLAGS_HEAPTYPE
) must visit their type with:Py_VISIT(Py_TYPE(self));
It is only needed since Python 3.9. To support Python 3.8 and older, this line must be conditionnal:
#if PY_VERSION_HEX >= 0x03090000 Py_VISIT(Py_TYPE(self)); #endif
If the
Py_TPFLAGS_MANAGED_DICT
bit is set in thetp_flags
field, the traverse function must callPyObject_VisitManagedDict()
like this:PyObject_VisitManagedDict((PyObject*)self, visit, arg);
警告
When implementing
tp_traverse
, only the members that the instance owns (by having strong references to them) must be visited. For instance, if an object supports weak references via thetp_weaklist
slot, the pointer supporting the linked list (what tp_weaklist points to) must not be visited as the instance does not directly own the weak references to itself (the weakreference list is there to support the weak reference machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be removed even if the instance is still alive).Note that
Py_VISIT()
requires the visit and arg parameters tolocal_traverse()
to have these specific names; don't name them just anything.Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either visit
Py_TYPE(self)
, or delegate this responsibility by callingtp_traverse
of another heap-allocated type (such as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.在 3.9 版本发生变更: Heap-allocated types are expected to visit
Py_TYPE(self)
intp_traverse
. In earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.继承:
Group:
Py_TPFLAGS_HAVE_GC
,tp_traverse
,tp_clear
This field is inherited by subtypes together with
tp_clear
and thePy_TPFLAGS_HAVE_GC
flag bit: the flag bit,tp_traverse
, andtp_clear
are all inherited from the base type if they are all zero in the subtype.
-
inquiry PyTypeObject.tp_clear¶
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC
flag bit is set. The signature is:int tp_clear(PyObject *);
The
tp_clear
member function is used to break reference cycles in cyclic garbage detected by the garbage collector. Taken together, alltp_clear
functions in the system must combine to break all reference cycles. This is subtle, and if in any doubt supply atp_clear
function. For example, the tuple type does not implement atp_clear
function, because it's possible to prove that no reference cycle can be composed entirely of tuples. Therefore thetp_clear
functions of other types must be sufficient to break any cycle containing a tuple. This isn't immediately obvious, and there's rarely a good reason to avoid implementingtp_clear
.Implementations of
tp_clear
should drop the instance's references to those of its members that may be Python objects, and set its pointers to those members toNULL
, as in the following example:static int local_clear(localobject *self) { Py_CLEAR(self->key); Py_CLEAR(self->args); Py_CLEAR(self->kw); Py_CLEAR(self->dict); return 0; }
The
Py_CLEAR()
macro should be used, because clearing references is delicate: the reference to the contained object must not be released (viaPy_DECREF()
) until after the pointer to the contained object is set toNULL
. This is because releasing the reference may cause the contained object to become trash, triggering a chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with the contained object). If it's possible for such code to reference self again, it's important that the pointer to the contained object beNULL
at that time, so that self knows the contained object can no longer be used. ThePy_CLEAR()
macro performs the operations in a safe order.If the
Py_TPFLAGS_MANAGED_DICT
bit is set in thetp_flags
field, the traverse function must callPyObject_ClearManagedDict()
like this:PyObject_ClearManagedDict((PyObject*)self);
Note that
tp_clear
is not always called before an instance is deallocated. For example, when reference counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved andtp_dealloc
is called directly.Because the goal of
tp_clear
functions is to break reference cycles, it's not necessary to clear contained objects like Python strings or Python integers, which can't participate in reference cycles. On the other hand, it may be convenient to clear all contained Python objects, and write the type'stp_dealloc
function to invoketp_clear
.More information about Python's garbage collection scheme can be found in section 使对象类型支持循环垃圾回收.
继承:
Group:
Py_TPFLAGS_HAVE_GC
,tp_traverse
,tp_clear
This field is inherited by subtypes together with
tp_traverse
and thePy_TPFLAGS_HAVE_GC
flag bit: the flag bit,tp_traverse
, andtp_clear
are all inherited from the base type if they are all zero in the subtype.
-
richcmpfunc PyTypeObject.tp_richcompare¶
An optional pointer to the rich comparison function, whose signature is:
PyObject *tp_richcompare(PyObject *self, PyObject *other, int op);
The first parameter is guaranteed to be an instance of the type that is defined by
PyTypeObject
.The function should return the result of the comparison (usually
Py_True
orPy_False
). If the comparison is undefined, it must returnPy_NotImplemented
, if another error occurred it must returnNULL
and set an exception condition.The following constants are defined to be used as the third argument for
tp_richcompare
and forPyObject_RichCompare()
:常量
对照
-
Py_LT¶
<
-
Py_LE¶
<=
-
Py_EQ¶
==
-
Py_NE¶
!=
-
Py_GT¶
>
-
Py_GE¶
>=
定义以下宏是为了简化编写丰富的比较函数:
-
Py_RETURN_RICHCOMPARE(VAL_A, VAL_B, op)¶
Return
Py_True
orPy_False
from the function, depending on the result of a comparison. VAL_A and VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The third argument specifies the requested operation, as forPyObject_RichCompare()
.The returned value is a new strong reference.
On error, sets an exception and returns
NULL
from the function.在 3.7 版本加入.
继承:
Group:
tp_hash
,tp_richcompare
This field is inherited by subtypes together with
tp_hash
: a subtype inheritstp_richcompare
andtp_hash
when the subtype'stp_richcompare
andtp_hash
are bothNULL
.默认:
PyBaseObject_Type
provides atp_richcompare
implementation, which may be inherited. However, if onlytp_hash
is defined, not even the inherited function is used and instances of the type will not be able to participate in any comparisons.-
Py_LT¶
-
Py_ssize_t PyTypeObject.tp_weaklistoffset¶
While this field is still supported,
Py_TPFLAGS_MANAGED_WEAKREF
should be used instead, if at all possible.If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs()
and thePyWeakref_*
functions. The instance structure needs to include a field of type PyObject* which is initialized toNULL
.Do not confuse this field with
tp_weaklist
; that is the list head for weak references to the type object itself.It is an error to set both the
Py_TPFLAGS_MANAGED_WEAKREF
bit andtp_weaklist
.继承:
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset
, this should not be a problem.默认:
If the
Py_TPFLAGS_MANAGED_WEAKREF
bit is set in thetp_dict
field, thentp_weaklistoffset
will be set to a negative value, to indicate that it is unsafe to use this field.
-
getiterfunc PyTypeObject.tp_iter¶
一个可选的指向函数的指针,该函数返回对象的 iterator。 它的存在通常表明该类型的实例为 iterable (尽管序列在没有此函数的情况下也可能为可迭代对象)。
This function has the same signature as
PyObject_GetIter()
:PyObject *tp_iter(PyObject *self);
继承:
此字段会被子类型继承。
-
iternextfunc PyTypeObject.tp_iternext¶
一个可选的指向函数的指针,该函数返回 iterator 中的下一项。 其签名为:
PyObject *tp_iternext(PyObject *self);
When the iterator is exhausted, it must return
NULL
; aStopIteration
exception may or may not be set. When another error occurs, it must returnNULL
too. Its presence signals that the instances of this type are iterators.Iterator types should also define the
tp_iter
function, and that function should return the iterator instance itself (not a new iterator instance).This function has the same signature as
PyIter_Next()
.继承:
此字段会被子类型继承。
-
struct PyMethodDef *PyTypeObject.tp_methods¶
An optional pointer to a static
NULL
-terminated array ofPyMethodDef
structures, declaring regular methods of this type.For each entry in the array, an entry is added to the type's dictionary (see
tp_dict
below) containing a method descriptor.继承:
This field is not inherited by subtypes (methods are inherited through a different mechanism).
-
struct PyMemberDef *PyTypeObject.tp_members¶
An optional pointer to a static
NULL
-terminated array ofPyMemberDef
structures, declaring regular data members (fields or slots) of instances of this type.For each entry in the array, an entry is added to the type's dictionary (see
tp_dict
below) containing a member descriptor.继承:
This field is not inherited by subtypes (members are inherited through a different mechanism).
-
struct PyGetSetDef *PyTypeObject.tp_getset¶
An optional pointer to a static
NULL
-terminated array ofPyGetSetDef
structures, declaring computed attributes of instances of this type.For each entry in the array, an entry is added to the type's dictionary (see
tp_dict
below) containing a getset descriptor.继承:
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
-
PyTypeObject *PyTypeObject.tp_base¶
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance is supported; multiple inheritance require dynamically creating a type object by calling the metatype.
备注
Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be "address constants". Function designators like
PyType_GenericNew()
, with implicit conversion to a pointer, are valid C99 address constants.However, the unary '&' operator applied to a non-static variable like
PyBaseObject_Type
is not required to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both compilers are strictly standard conforming in this particular behavior.Consequently,
tp_base
should be set in the extension module's init function.继承:
This field is not inherited by subtypes (obviously).
默认:
This field defaults to
&PyBaseObject_Type
(which to Python programmers is known as the typeobject
).
-
PyObject *PyTypeObject.tp_dict¶
The type's dictionary is stored here by
PyType_Ready()
.This field should normally be initialized to
NULL
before PyType_Ready is called; it may also be initialized to a dictionary containing initial attributes for the type. OncePyType_Ready()
has initialized the type, extra attributes for the type may be added to this dictionary only if they don't correspond to overloaded operations (like__add__()
). Once initialization for the type has finished, this field should be treated as read-only.Some types may not store their dictionary in this slot. Use
PyType_GetDict()
to retrieve the dictionary for an arbitrary type.在 3.12 版本发生变更: Internals detail: For static builtin types, this is always
NULL
. Instead, the dict for such types is stored onPyInterpreterState
. UsePyType_GetDict()
to get the dict for an arbitrary type.继承:
This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mechanism).
默认:
If this field is
NULL
,PyType_Ready()
will assign a new dictionary to it.警告
It is not safe to use
PyDict_SetItem()
on or otherwise modifytp_dict
with the dictionary C-API.
-
descrgetfunc PyTypeObject.tp_descr_get¶
An optional pointer to a "descriptor get" function.
函数的签名为:
PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);
继承:
此字段会被子类型继承。
-
descrsetfunc PyTypeObject.tp_descr_set¶
An optional pointer to a function for setting and deleting a descriptor's value.
函数的签名为:
int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);
The value argument is set to
NULL
to delete the value.继承:
此字段会被子类型继承。
-
Py_ssize_t PyTypeObject.tp_dictoffset¶
While this field is still supported,
Py_TPFLAGS_MANAGED_DICT
should be used instead, if at all possible.If the instances of this type have a dictionary containing instance variables, this field is non-zero and contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr()
.Do not confuse this field with
tp_dict
; that is the dictionary for attributes of the type object itself.The value specifies the offset of the dictionary from the start of the instance structure.
The
tp_dictoffset
should be regarded as write-only. To get the pointer to the dictionary callPyObject_GenericGetDict()
. CallingPyObject_GenericGetDict()
may need to allocate memory for the dictionary, so it is may be more efficient to callPyObject_GetAttr()
when accessing an attribute on the object.It is an error to set both the
Py_TPFLAGS_MANAGED_WEAKREF
bit andtp_dictoffset
.继承:
This field is inherited by subtypes. A subtype should not override this offset; doing so could be unsafe, if C code tries to access the dictionary at the previous offset. To properly support inheritance, use
Py_TPFLAGS_MANAGED_DICT
.默认:
This slot has no default. For static types, if the field is
NULL
then no__dict__
gets created for instances.If the
Py_TPFLAGS_MANAGED_DICT
bit is set in thetp_flags
field, thentp_dictoffset
will be set to-1
, to indicate that it is unsafe to use this field.
-
initproc PyTypeObject.tp_init¶
An optional pointer to an instance initialization function.
This function corresponds to the
__init__()
method of classes. Like__init__()
, it is possible to create an instance without calling__init__()
, and it is possible to reinitialize an instance by calling its__init__()
method again.函数的签名为:
int tp_init(PyObject *self, PyObject *args, PyObject *kwds);
The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword arguments of the call to
__init__()
.The
tp_init
function, if notNULL
, is called when an instance is created normally by calling its type, after the type'stp_new
function has returned an instance of the type. If thetp_new
function returns an instance of some other type that is not a subtype of the original type, notp_init
function is called; iftp_new
returns an instance of a subtype of the original type, the subtype'stp_init
is called.成功时返回
0
,发生错误时则返回-1
并在错误上设置一个异常。and sets an exception on error.继承:
此字段会被子类型继承。
默认:
对于 静态类型 来说该字段没有默认值。
-
allocfunc PyTypeObject.tp_alloc¶
指向一个实例分配函数的可选指针。
函数的签名为:
PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems);
继承:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
默认:
For dynamic subtypes, this field is always set to
PyType_GenericAlloc()
, to force a standard heap allocation strategy.For static subtypes,
PyBaseObject_Type
usesPyType_GenericAlloc()
. That is the recommended value for all statically defined types.
-
newfunc PyTypeObject.tp_new¶
An optional pointer to an instance creation function.
函数的签名为:
PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds);
The subtype argument is the type of the object being created; the args and kwds arguments represent positional and keyword arguments of the call to the type. Note that subtype doesn't have to equal the type whose
tp_new
function is called; it may be a subtype of that type (but not an unrelated type).The
tp_new
function should callsubtype->tp_alloc(subtype, nitems)
to allocate space for the object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be ignored or repeated should be placed in thetp_init
handler. A good rule of thumb is that for immutable types, all initialization should take place intp_new
, while for mutable types, most initialization should be deferred totp_init
.Set the
Py_TPFLAGS_DISALLOW_INSTANTIATION
flag to disallow creating instances of the type in Python.继承:
This field is inherited by subtypes, except it is not inherited by static types whose
tp_base
isNULL
or&PyBaseObject_Type
.默认:
For static types this field has no default. This means if the slot is defined as
NULL
, the type cannot be called to create new instances; presumably there is some other way to create instances, like a factory function.
-
freefunc PyTypeObject.tp_free¶
An optional pointer to an instance deallocation function. Its signature is:
void tp_free(void *self);
An initializer that is compatible with this signature is
PyObject_Free()
.继承:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
默认:
In dynamic subtypes, this field is set to a deallocator suitable to match
PyType_GenericAlloc()
and the value of thePy_TPFLAGS_HAVE_GC
flag bit.For static subtypes,
PyBaseObject_Type
usesPyObject_Del()
.
-
inquiry PyTypeObject.tp_is_gc¶
可选的指向垃圾回收器所调用的函数的指针。
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to look at the object's type's
tp_flags
field, and check thePy_TPFLAGS_HAVE_GC
flag bit. But some types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible. Such types should define this function; it should return1
for a collectible instance, and0
for a non-collectible instance. The signature is:int tp_is_gc(PyObject *self);
(The only example of this are types themselves. The metatype,
PyType_Type
, defines this function to distinguish between statically and dynamically allocated types.)继承:
此字段会被子类型继承。
默认:
This slot has no default. If this field is
NULL
,Py_TPFLAGS_HAVE_GC
is used as the functional equivalent.
-
PyObject *PyTypeObject.tp_bases¶
Tuple of base types.
This field should be set to
NULL
and treated as read-only. Python will fill it in when the type isinitialized
.For dynamically created classes, the
Py_tp_bases
slot
can be used instead of the bases argument ofPyType_FromSpecWithBases()
. The argument form is preferred.警告
Multiple inheritance does not work well for statically defined types. If you set
tp_bases
to a tuple, Python will not raise an error, but some slots will only be inherited from the first base.继承:
这个字段不会被继承。
-
PyObject *PyTypeObject.tp_mro¶
包含基类型的扩展集的元组,以类型本身开始并以
object
作为结束,使用方法解析顺序。This field should be set to
NULL
and treated as read-only. Python will fill it in when the type isinitialized
.继承:
这个字段不会被继承;它是通过
PyType_Ready()
计算得到的。
-
PyObject *PyTypeObject.tp_cache¶
尚未使用。 仅供内部使用。
继承:
这个字段不会被继承。
-
void *PyTypeObject.tp_subclasses¶
A collection of subclasses. Internal use only. May be an invalid pointer.
To get a list of subclasses, call the Python method
__subclasses__()
.在 3.12 版本发生变更: For some types, this field does not hold a valid PyObject*. The type was changed to void* to indicate this.
继承:
这个字段不会被继承。
-
PyObject *PyTypeObject.tp_weaklist¶
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.
在 3.12 版本发生变更: Internals detail: For the static builtin types this is always
NULL
, even if weakrefs are added. Instead, the weakrefs for each are stored onPyInterpreterState
. Use the public C-API or the internal_PyObject_GET_WEAKREFS_LISTPTR()
macro to avoid the distinction.继承:
这个字段不会被继承。
-
destructor PyTypeObject.tp_del¶
This field is deprecated. Use
tp_finalize
instead.
-
unsigned int PyTypeObject.tp_version_tag¶
Used to index into the method cache. Internal use only.
继承:
这个字段不会被继承。
-
destructor PyTypeObject.tp_finalize¶
An optional pointer to an instance finalization function. Its signature is:
void tp_finalize(PyObject *self);
If
tp_finalize
is set, the interpreter calls it once when finalizing an instance. It is called either from the garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the object in a sane state.tp_finalize
should not mutate the current exception status; therefore, a recommended way to write a non-trivial finalizer is:static void local_finalize(PyObject *self) { PyObject *error_type, *error_value, *error_traceback; /* Save the current exception, if any. */ PyErr_Fetch(&error_type, &error_value, &error_traceback); /* ... */ /* Restore the saved exception. */ PyErr_Restore(error_type, error_value, error_traceback); }
Also, note that, in a garbage collected Python,
tp_dealloc
may be called from any Python thread, not just the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate any assumptions of the library.继承:
此字段会被子类型继承。
在 3.4 版本加入.
在 3.8 版本发生变更: Before version 3.8 it was necessary to set the
Py_TPFLAGS_HAVE_FINALIZE
flags bit in order for this field to be used. This is no longer required.参见
"Safe object finalization" (PEP 442)
-
vectorcallfunc PyTypeObject.tp_vectorcall¶
Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall for
type.__call__
. Iftp_vectorcall
isNULL
, the default call implementation using__new__()
and__init__()
is used.继承:
这个字段不会被继承。
在 3.9 版本加入: (这个字段从 3.8 起即存在,但是从 3.9 开始投入使用)
-
unsigned char PyTypeObject.tp_watched¶
Internal. Do not use.
在 3.12 版本加入.
Static Types¶
Traditionally, types defined in C code are static, that is,
a static PyTypeObject
structure is defined directly in code
and initialized using PyType_Ready()
.
This results in types that are limited relative to types defined in Python:
Static types are limited to one base, i.e. they cannot use multiple inheritance.
Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the type object's attributes from Python.
Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific state.
Also, since PyTypeObject
is only part of the Limited API as an opaque struct, any extension modules using static types must be
compiled for a specific Python minor version.
堆类型¶
An alternative to static types is heap-allocated types,
or heap types for short, which correspond closely to classes created by
Python's class
statement. Heap types have the Py_TPFLAGS_HEAPTYPE
flag set.
This is done by filling a PyType_Spec
structure and calling
PyType_FromSpec()
, PyType_FromSpecWithBases()
,
PyType_FromModuleAndSpec()
, or PyType_FromMetaclass()
.
Number Object Structures¶
-
type PyNumberMethods¶
This structure holds pointers to the functions which an object uses to implement the number protocol. Each function is used by the function of similar name documented in the 数字协议 section.
Here is the structure definition:
typedef struct { binaryfunc nb_add; binaryfunc nb_subtract; binaryfunc nb_multiply; binaryfunc nb_remainder; binaryfunc nb_divmod; ternaryfunc nb_power; unaryfunc nb_negative; unaryfunc nb_positive; unaryfunc nb_absolute; inquiry nb_bool; unaryfunc nb_invert; binaryfunc nb_lshift; binaryfunc nb_rshift; binaryfunc nb_and; binaryfunc nb_xor; binaryfunc nb_or; unaryfunc nb_int; void *nb_reserved; unaryfunc nb_float; binaryfunc nb_inplace_add; binaryfunc nb_inplace_subtract; binaryfunc nb_inplace_multiply; binaryfunc nb_inplace_remainder; ternaryfunc nb_inplace_power; binaryfunc nb_inplace_lshift; binaryfunc nb_inplace_rshift; binaryfunc nb_inplace_and; binaryfunc nb_inplace_xor; binaryfunc nb_inplace_or; binaryfunc nb_floor_divide; binaryfunc nb_true_divide; binaryfunc nb_inplace_floor_divide; binaryfunc nb_inplace_true_divide; unaryfunc nb_index; binaryfunc nb_matrix_multiply; binaryfunc nb_inplace_matrix_multiply; } PyNumberMethods;
备注
Binary and ternary functions must check the type of all their operands, and implement the necessary conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for the given operands, binary and ternary functions must return
Py_NotImplemented
, if another error occurred they must returnNULL
and set an exception.备注
The
nb_reserved
field should always beNULL
. It was previously callednb_long
, and was renamed in Python 3.0.1.
-
binaryfunc PyNumberMethods.nb_add¶
-
binaryfunc PyNumberMethods.nb_subtract¶
-
binaryfunc PyNumberMethods.nb_multiply¶
-
binaryfunc PyNumberMethods.nb_remainder¶
-
binaryfunc PyNumberMethods.nb_divmod¶
-
ternaryfunc PyNumberMethods.nb_power¶
-
unaryfunc PyNumberMethods.nb_negative¶
-
unaryfunc PyNumberMethods.nb_positive¶
-
unaryfunc PyNumberMethods.nb_absolute¶
-
inquiry PyNumberMethods.nb_bool¶
-
unaryfunc PyNumberMethods.nb_invert¶
-
binaryfunc PyNumberMethods.nb_lshift¶
-
binaryfunc PyNumberMethods.nb_rshift¶
-
binaryfunc PyNumberMethods.nb_and¶
-
binaryfunc PyNumberMethods.nb_xor¶
-
binaryfunc PyNumberMethods.nb_or¶
-
unaryfunc PyNumberMethods.nb_int¶
-
void *PyNumberMethods.nb_reserved¶
-
unaryfunc PyNumberMethods.nb_float¶
-
binaryfunc PyNumberMethods.nb_inplace_add¶
-
binaryfunc PyNumberMethods.nb_inplace_subtract¶
-
binaryfunc PyNumberMethods.nb_inplace_multiply¶
-
binaryfunc PyNumberMethods.nb_inplace_remainder¶
-
ternaryfunc PyNumberMethods.nb_inplace_power¶
-
binaryfunc PyNumberMethods.nb_inplace_lshift¶
-
binaryfunc PyNumberMethods.nb_inplace_rshift¶
-
binaryfunc PyNumberMethods.nb_inplace_and¶
-
binaryfunc PyNumberMethods.nb_inplace_xor¶
-
binaryfunc PyNumberMethods.nb_inplace_or¶
-
binaryfunc PyNumberMethods.nb_floor_divide¶
-
binaryfunc PyNumberMethods.nb_true_divide¶
-
binaryfunc PyNumberMethods.nb_inplace_floor_divide¶
-
binaryfunc PyNumberMethods.nb_inplace_true_divide¶
-
unaryfunc PyNumberMethods.nb_index¶
-
binaryfunc PyNumberMethods.nb_matrix_multiply¶
-
binaryfunc PyNumberMethods.nb_inplace_matrix_multiply¶
Mapping Object Structures¶
-
type PyMappingMethods¶
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three members:
-
lenfunc PyMappingMethods.mp_length¶
This function is used by
PyMapping_Size()
andPyObject_Size()
, and has the same signature. This slot may be set toNULL
if the object has no defined length.
-
binaryfunc PyMappingMethods.mp_subscript¶
This function is used by
PyObject_GetItem()
andPySequence_GetSlice()
, and has the same signature asPyObject_GetItem()
. This slot must be filled for thePyMapping_Check()
function to return1
, it can beNULL
otherwise.
-
objobjargproc PyMappingMethods.mp_ass_subscript¶
This function is used by
PyObject_SetItem()
,PyObject_DelItem()
,PySequence_SetSlice()
andPySequence_DelSlice()
. It has the same signature asPyObject_SetItem()
, but v can also be set toNULL
to delete an item. If this slot isNULL
, the object does not support item assignment and deletion.
Sequence Object Structures¶
-
type PySequenceMethods¶
This structure holds pointers to the functions which an object uses to implement the sequence protocol.
-
lenfunc PySequenceMethods.sq_length¶
This function is used by
PySequence_Size()
andPyObject_Size()
, and has the same signature. It is also used for handling negative indices via thesq_item
and thesq_ass_item
slots.
-
binaryfunc PySequenceMethods.sq_concat¶
This function is used by
PySequence_Concat()
and has the same signature. It is also used by the+
operator, after trying the numeric addition via thenb_add
slot.
-
ssizeargfunc PySequenceMethods.sq_repeat¶
This function is used by
PySequence_Repeat()
and has the same signature. It is also used by the*
operator, after trying numeric multiplication via thenb_multiply
slot.
-
ssizeargfunc PySequenceMethods.sq_item¶
This function is used by
PySequence_GetItem()
and has the same signature. It is also used byPyObject_GetItem()
, after trying the subscription via themp_subscript
slot. This slot must be filled for thePySequence_Check()
function to return1
, it can beNULL
otherwise.Negative indexes are handled as follows: if the
sq_length
slot is filled, it is called and the sequence length is used to compute a positive index which is passed tosq_item
. Ifsq_length
isNULL
, the index is passed as is to the function.
-
ssizeobjargproc PySequenceMethods.sq_ass_item¶
This function is used by
PySequence_SetItem()
and has the same signature. It is also used byPyObject_SetItem()
andPyObject_DelItem()
, after trying the item assignment and deletion via themp_ass_subscript
slot. This slot may be left toNULL
if the object does not support item assignment and deletion.
-
objobjproc PySequenceMethods.sq_contains¶
该函数可供
PySequence_Contains()
使用并具有相同的签名。 此槽位可以保持为NULL
,在此情况下PySequence_Contains()
只需遍历该序列直到找到一个匹配。
-
binaryfunc PySequenceMethods.sq_inplace_concat¶
This function is used by
PySequence_InPlaceConcat()
and has the same signature. It should modify its first operand, and return it. This slot may be left toNULL
, in this casePySequence_InPlaceConcat()
will fall back toPySequence_Concat()
. It is also used by the augmented assignment+=
, after trying numeric in-place addition via thenb_inplace_add
slot.
-
ssizeargfunc PySequenceMethods.sq_inplace_repeat¶
This function is used by
PySequence_InPlaceRepeat()
and has the same signature. It should modify its first operand, and return it. This slot may be left toNULL
, in this casePySequence_InPlaceRepeat()
will fall back toPySequence_Repeat()
. It is also used by the augmented assignment*=
, after trying numeric in-place multiplication via thenb_inplace_multiply
slot.
Buffer Object Structures¶
-
type PyBufferProcs¶
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an exporter object can expose its internal data to consumer objects.
-
getbufferproc PyBufferProcs.bf_getbuffer¶
The signature of this function is:
int (PyObject *exporter, Py_buffer *view, int flags);
Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this function MUST take these steps:
Check if the request can be met. If not, raise
BufferError
, set view->obj toNULL
and return-1
.Fill in the requested fields.
Increment an internal counter for the number of exports.
Set view->obj to exporter and increment view->obj.
Return
0
.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:
Re-export: Each member of the tree acts as the exporting object and sets view->obj to a new reference to itself.
Redirect: The buffer request is redirected to the root object of the tree. Here, view->obj will be a new reference to the root object.
The individual fields of view are described in section Buffer structure, the rules how an exporter must react to specific requests are in section Buffer request types.
All memory pointed to in the
Py_buffer
structure belongs to the exporter and must remain valid until there are no consumers left.format
,shape
,strides
,suboffsets
andinternal
are read-only for the consumer.PyBuffer_FillInfo()
provides an easy way of exposing a simple bytes buffer while dealing correctly with all request types.PyObject_GetBuffer()
is the interface for the consumer that wraps this function.
-
releasebufferproc PyBufferProcs.bf_releasebuffer¶
The signature of this function is:
void (PyObject *exporter, Py_buffer *view);
Handle a request to release the resources of the buffer. If no resources need to be released,
PyBufferProcs.bf_releasebuffer
may beNULL
. Otherwise, a standard implementation of this function will take these optional steps:Decrement an internal counter for the number of exports.
If the counter is
0
, free all memory associated with view.
The exporter MUST use the
internal
field to keep track of buffer-specific resources. This field is guaranteed to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.This function MUST NOT decrement view->obj, since that is done automatically in
PyBuffer_Release()
(this scheme is useful for breaking reference cycles).PyBuffer_Release()
is the interface for the consumer that wraps this function.
Async Object Structures¶
在 3.5 版本加入.
-
type PyAsyncMethods¶
This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.
Here is the structure definition:
typedef struct { unaryfunc am_await; unaryfunc am_aiter; unaryfunc am_anext; sendfunc am_send; } PyAsyncMethods;
-
unaryfunc PyAsyncMethods.am_await¶
The signature of this function is:
PyObject *am_await(PyObject *self);
返回的对象必须为 iterator,即对其执行
PyIter_Check()
必须返回1
。This slot may be set to
NULL
if an object is not an awaitable.
-
unaryfunc PyAsyncMethods.am_aiter¶
The signature of this function is:
PyObject *am_aiter(PyObject *self);
Must return an asynchronous iterator object. See
__anext__()
for details.This slot may be set to
NULL
if an object does not implement asynchronous iteration protocol.
-
unaryfunc PyAsyncMethods.am_anext¶
The signature of this function is:
PyObject *am_anext(PyObject *self);
Must return an awaitable object. See
__anext__()
for details. This slot may be set toNULL
.
-
sendfunc PyAsyncMethods.am_send¶
The signature of this function is:
PySendResult am_send(PyObject *self, PyObject *arg, PyObject **result);
See
PyIter_Send()
for details. This slot may be set toNULL
.在 3.10 版本加入.
Slot Type typedefs¶
-
typedef PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)¶
- Part of the Stable ABI.
The purpose of this function is to separate memory allocation from memory initialization. It should return a pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but with
ob_refcnt
set to1
andob_type
set to the type argument. If the type'stp_itemsize
is non-zero, the object'sob_size
field should be initialized to nitems and the length of the allocated memory block should betp_basicsize + nitems*tp_itemsize
, rounded up to a multiple ofsizeof(void*)
; otherwise, nitems is not used and the length of the block should betp_basicsize
.This function should not do any other instance initialization, not even to allocate additional memory; that should be done by
tp_new
.
-
typedef void (*destructor)(PyObject*)¶
- Part of the Stable ABI.
-
typedef PyObject *(*reprfunc)(PyObject*)¶
- Part of the Stable ABI.
参见
tp_repr
。
-
typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)¶
- Part of the Stable ABI.
返回对象的指定属性的值。
-
typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)¶
- Part of the Stable ABI.
Set the value of the named attribute for the object. The value argument is set to
NULL
to delete the attribute.
-
typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)¶
- Part of the Stable ABI.
返回对象的指定属性的值。
参见
tp_getattro
。
-
typedef int (*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)¶
- Part of the Stable ABI.
Set the value of the named attribute for the object. The value argument is set to
NULL
to delete the attribute.参见
tp_setattro
。
-
typedef PyObject *(*descrgetfunc)(PyObject*, PyObject*, PyObject*)¶
- Part of the Stable ABI.
参见
tp_descr_get
。
-
typedef int (*descrsetfunc)(PyObject*, PyObject*, PyObject*)¶
- Part of the Stable ABI.
参见
tp_descr_set
。
-
typedef Py_hash_t (*hashfunc)(PyObject*)¶
- Part of the Stable ABI.
参见
tp_hash
。
-
typedef PyObject *(*richcmpfunc)(PyObject*, PyObject*, int)¶
- Part of the Stable ABI.
参见
tp_richcompare
。
-
typedef PyObject *(*getiterfunc)(PyObject*)¶
- Part of the Stable ABI.
参见
tp_iter
。
-
typedef PyObject *(*iternextfunc)(PyObject*)¶
- Part of the Stable ABI.
参见
tp_iternext
。
-
typedef Py_ssize_t (*lenfunc)(PyObject*)¶
- Part of the Stable ABI.
-
typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)¶
- Part of the Stable ABI since version 3.12.
-
typedef void (*releasebufferproc)(PyObject*, Py_buffer*)¶
- Part of the Stable ABI since version 3.12.
-
typedef PyObject *(*unaryfunc)(PyObject*)¶
- Part of the Stable ABI.
-
typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)¶
- Part of the Stable ABI.
-
typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)¶
- Part of the Stable ABI.
-
typedef int (*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)¶
- Part of the Stable ABI.
-
typedef int (*objobjproc)(PyObject*, PyObject*)¶
- Part of the Stable ABI.
-
typedef int (*objobjargproc)(PyObject*, PyObject*, PyObject*)¶
- Part of the Stable ABI.
例子¶
下面是一些 Python 类型定义的简单示例。 其中包括你可能会遇到的通常用法。 有些演示了令人困惑的边际情况。 要获取更多示例、实践信息以及教程,请参阅 自定义扩展类型:教程 和 定义扩展类型:已分类主题。
一个基本的 静态类型:
typedef struct {
PyObject_HEAD
const char *data;
} MyObject;
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,
};
你可能还会看到带有更繁琐的初始化器的较旧代码(特别是在 CPython 代码库中):
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"mymod.MyObject", /* tp_name */
sizeof(MyObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)myobj_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)myobj_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
PyDoc_STR("My objects"), /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
myobj_new, /* tp_new */
};
一个支持弱引用、实例字典和哈希运算的类型:
typedef struct {
PyObject_HEAD
const char *data;
} MyObject;
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_MANAGED_DICT |
Py_TPFLAGS_MANAGED_WEAKREF,
.tp_new = myobj_new,
.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,
.tp_alloc = PyType_GenericNew,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,
.tp_hash = (hashfunc)myobj_hash,
.tp_richcompare = PyBaseObject_Type.tp_richcompare,
};
A str subclass that cannot be subclassed and cannot be called
to create instances (e.g. uses a separate factory func) using
Py_TPFLAGS_DISALLOW_INSTANTIATION
flag:
typedef struct {
PyUnicodeObject raw;
char *extra;
} MyStr;
static PyTypeObject MyStr_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof(MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,
};
最简单的固定长度实例 静态类型:
typedef struct {
PyObject_HEAD
} MyObject;
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
};
The simplest static type with variable-length instances:
typedef struct {
PyObject_VAR_HEAD
const char *data[1];
} MyObject;
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject) - sizeof(char *),
.tp_itemsize = sizeof(char *),
};